روش ماتریسی تاپلیتز برای حل عددی معادلات انتگرال

thesis
abstract

در روش ماترسی تاپلیتز ابتدا بازه انتگرالگیری را به زیربازه های مساوی تقسیم و جمله انتگرالی معادله انتگرال اولیه را به مجموع متناهی از انتگرالها روی زیربازه ها تبدیل می کنیم. سپس با استفاده از توابع کمکی هر یک از انتگرال ها روی زیربازه ها را تقریب زده و به این ترتیب معادله انتگرال اولیه را به یک دستگاه جبری غیرخطی تبدیل می کنیم و با حل این دستگاه غیرخطی جواب تقریبی معادله انتگرال را در نقاط گره ای به دست می آوریم. نکته مهم در این روش شکل ماترس ضرایب دستگاه غیرخطی حاصله می باشد که بر اساس تئوری و عددی ارائه شده در پایان نامه به یکی از شکلهای تاپلیتز، متقارن مرکزی، پادمتقارن مرکزی، قرینه سطری، قرینه ستونی، متقارن سطری و متقارن ستونی می باشد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

موجکهای چبیشف برای حل عددی معادلات انتگرال تصادفی ولترا با روش کمترین مربعات

این مقاله با استفاده از موجک چبیشف و روش کمترین مربعات، یک روش تقریبی برای حل معادله انتگرال ایتو-ولتراارائه می دهد. معادله انتگرال ایتو-ولترا با روش کمترین مربعات به وسیله موجک چبیشف به یک دستگاه معادلات خطیتبدیل می شود که آنالیز خطای روش پیشنهادی، ارائه شده و سرعت همگرایی نیز اثبات شده است. همچنین مثال هایعددی میزان دقت و کارآمدی این روش را نسبت به روش ماتریس عملیاتی تصادفی نشان می دهند.

full text

روش محاسباتی برای حل معادلات انتگرال ولترا- فردهلم ترکیبی غیرخطی

در این مقاله، حل معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی، بااستفاده ازتوابع بلاک - پالس اصلاح شده سه بعدی(m3d-bfs) بررسی شده است. این روش معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی را به دستگاه معادلات غیرخطی جبری تبدیل می کند. شرح مثال ها گویای کارایی و سادگی روش ارایه شده می باشد.

full text

روش ماتریسی بسل برای حل عددی رده ای از معادلات دیفرانسیل-انتگرال خطی از مرتبه بالا

در این پایان نامه یک روش عددی موسوم به روش ماتریسی بسل برای تقریب زدن جواب معادلات دیفرانسیل-انتگرال ولترا و فردهولم-ولترا خطی از مرتبه بالا تحت شرایط مخلوط مورد بررسی قرار گرفته است. این روش با استفاده از چندجمله ای های بسل و روش هم محلی معادله دیفرانسیل-انتگرال را به یک معادله ماتریسی تبدیل می کند. معادله ماتریسی متناظر با یک دستگاه معادلات خطی با ضرایب مجهول بسل است. بعلاوه روش ماتریسی بسل...

15 صفحه اول

‏به‌کارگیری موجک چبیشف‏ نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم

در این مقاله‏، حل عددی معادلات انتگرال فردهلم فازی نوع دو‏م با به‌کارگیری موجک چبیشف‏ نوع دوم را مورد بررسی قرار می‌دهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگی‌های اولیه موجک چبیشف‏ نوع دوم‏، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دو‏م‏، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی می‌نماییم. سپس با به‌کارگیری موجک چبیشف‏ نوع دوم و به...

full text

یک روش هسنبرگی برای حل عددی معادلات ماتریسی سیلوستر بلوکی

معادله ی ماتریسی سیلوستر در بسیاری از مسئله های کنترل کاربرد دارد؛ بنابراین جواب آن مورد توجه بسیاری از نویسندگان بوده است. روش های استاندارد برای حل این معادله ی ماتریسی عبارتند از: روش بارتلز-استوارت (یا روش شور) و روش هسنبرگ-شور. در این پایان نامه ابتدا وجود و یکتایی جواب معادله ی ماتریسی سیلوستر مورد بررسی قرار می گیرد، سپس پیشنیازهایی برای حل این معادله ی ماتریسی شامل تعریف ها، قضیه ها و ر...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023